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Abstract

This paper discusses the reliability of operation of an on-line computer

system described by a semi-Markov process model. Analytical solutions are

obtained by using computer-aided algebraic manipulation techniques. This

paper demonstrates that the difficulties of obtaining analytical solutions

to Markov processes by standard techniques can be considerably reduced by

the application of algebraic symbol manipulation languages. To the author's

knowledge, the results of the reliability analysis are also new.
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I. INTRODUCTION

Consider an on-line computer system as shown in Fig. 1. The users of

such a system gain access via the terminals. The computational needs of a

user are satisfied by the main processor. Communications among the users,

and between any user and the main processor, are supervised by the front-end

processor. The main purpose of a front-end processor is to relieve the main

processor of the communications-management duties. In such a system, either

the front-end processor or the main processor or both may fail at any time.

We assume that if the front-end processor fails, then the communications-

management job is taken over by the main processor. This causes an increase

in response-time as observed by the users and constitutes a degradation of the

system-performance. If the main processor fails, then evidently the users

have a limited computational support from the front-end processor but they

may communicate with each other via the front-end processor. This situation

constitutes a more serious degradation of the system-performance than the one

mentioned above. Finally, if both processors fail, the system is shut down

completely for repairs. In such a situation, the main processor has priority

on repair service over the front-end processor. Note that the system is not

a simple special case of the repairman problem [2] or a series connection of

two unreliable subsystems [3]. -1

This system can be characterized by four states which are listed in Table

1. Transitions between pairs of states occur at randomly distributed instants

of time. Therefore, it is possible to describe the system by a semi-Markov

process. The reliability of operation of such a system can be measured by
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various probabilistic measures related to the semi-Markov process. In the

next section we describe the semi-Markov process in more detail.

II. SFII-MARDV PROCESS MODEL

A semi-Markov process is described by a set of states and probabilistic

descriptions of the temporal transitions between pairs of states [1]. The

on-line computer system has four states, each state uniquely labelled by an

integer from the set [1,...,4] as shown in Table 1. Allowable transitions

between pairs of states are shown in Fig. 2. Let t. denote the time spent
1

by the process in state i before a transition to some other state occurs.

We define the waiting-time distribution in state i as

01
Wi(t) =Plti < t] i

and the corresponding density function and mean by w~ (t) and ;W, respectively.

Let [O,F1] and [O,F 2 ] respectively denote the failure-free operation in-

tervals of the main and front-end processors. Following arguments in [2] and 4

[3], we assume the failure-time distributions to be

P[F1 < t] -1 exp(-L t) ,

and P[F 2 < t] =1 - exp(-L2t) ,

for t>O and zeros otherwise. Let [0,RI] and [0,R 2] denote the repair-time

intervals of the main and front-end processors, respectively. We assume the

repair-time distributions to be

P[R1 < t] = 1 - exp(-Glt) ,

and P[R 2  t t] - 1 - exp(-G 2t)

I]
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for t>O ari zeros otherwise. Note that since the main processor has priority

of repair service, only the exponential distribution for P[R2<t] will result

in a Markov process. The waiting-time distribution for each state can now

be evaluated in a straightforward manner. As an example, let us evaluate

W3(t). We define the following events:

El: Repair-time of the main processor > t

E2 Failure-time of the front-end processor > t

Then

1 - W3 (t) : P[E1 and E2]

P[E1] P[E2 ]

= exp(-G1 t) exp(-L 2t) , -

= exp(-(Gl+L2 )t)

and hence

W3 (t) 1 - exp(-(Gl+L2 )t)

The corresponding density function is

w3 (t) (Gl+L 2 )exp(-(Gl+L2 )t)

and the mean is

W3 = I/(GI+L2 )

A list of the four waiting-time distributions, their density functions and

means are given in Table 2.

0
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Let pij (t) denote the conditional probability density function of a

transition to state j in [t,t+A] given that the process entered state i at

time zero and the next transition from state i occurs in [t,t+A] for suf-

ficiently small A>O. Then the probability density function of a transition

from state i to state j after waiting t units of time in state i is given by

. ij (t) 1Pj(t)wi(t)

The core matrix of a semi-Markov process is defined as C(t)=[c (t)], and it

iJ

provides a complete probabilistic description of the process [1].

Let us consider a sample calculation for the conditional transition

probability density function from state 3 to state 2. We define the follow-

ing events:

E3: Front-end processor fails in [t,t+A] ,

E4 : Main processor not repaired in [O,t] ,

ES : Transition occurs out of state 3 in [tt+A]

Then

0

P32 (t) = P[(E 3 and E4 )/E 5 ]

=P[(E and E4 ) and ES]/P[E5]

= P[E 3 and E4]/P[E5] ,

(AL2exp (-L2t)) exp (-G t)

= L2/(G+L 2 )

F --

ITO
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The core matrix of this process is shown in Table 3. The single-step trans-
CO

ition probability matrix of the imbedded Markov chain is given by P= f P(t)dt.
0

The P matrix for this process is shown in Table 4.

Let eij (t)A denote the probability that the process will enter state j
1J

in [t,t+A] given that it was in state i at time zero and let E(t)=[e. (t)].
1J

Then

E(s) = [I-C(s)] 1

where I is the identity matrix and E(s) and C(s) are Laplace transforms of E(t)

and C(t) respectively (see 1]). Define

E = lim[sE(s)]
s54O

For a monodesmic process such as the one described here, the rows of E are

thidentical [1]. Let e. denote the j element of any row of E. Then the limit-

ing interval transition probability for state j, denoted by h., is given by

hj ej .W "

Suppose the process has been operating unobserved for a long period of time.

Then h. is the probability of the event that the process will be in state jJ 'S'
when observed next. The state occupancy statistics can also be obtained from

E(s). The details of this and mean first-passage time computations can be

found in [1].
S

The next section shows how analytic expressions can be obtained for hJ,

state occupancy statistics, and mean first-passage times by using camputer-

aided algebraic manipulation techniques. This material was generated inter-

aactively, by using the symbol manipulation language called MACSYMA available--
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Table 1

STATE DESCRIPTION TABLE

STATE LABEL

Both processors in operation 1

Both processors down 2 .

Only main processor down 3

Only front-end processor down 4

Table 2

WAITING-TIME DISTRIBUTIONS

STATE DISTRIBUTION DENSITY MEAN
} 1 1 - exp(-(L +L2 )t) (L +L2)exp(-(L +L2 )t) 1/(L I+L2)

2 1 - exp(-G1t) Glexp(-Glt) 1/G1

3 1 - exp(-(G1+L2)t) (G1 +L2 )exp(-(G 1+L2 )t) /(G+L 2)

4 1 - exp(-(L1 +G2)t) (L1+G2 )exp(-(L 1 +G2 )t) l/(Ll+G2 )

Table 3

(ORE MATRIX

0 0 LIexp(-(L 1+L 2)t) L2exp(- (L+L 2)t)

o 0 0 Glexp(-Gt)
Glexp(-(G+L 2 )t) L2 exp(- (Gl+L 2 )t) 0 0

G2exp(-(L+G 2 )t) Llexp(-(L+GS2)t) 0 0

•~ ~ ~ ~ . ... .. .
. -. . . ,
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Table 4

TRANSITION PRDBA.BILITY MATRIX OF THE IMBEDDED MARKOV CHAIN

0 0 nl/ (L1 +L2) L2/(LI+L 2)

0 0 0 1

G1/(G1+L2) L2/(GI+L 2) 0 0

G /(LI+G 2 ) L1/(L+G 2) 0 0

212 112

4

-11
-o.

A.•
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(C6) -

TCORE :MATRIX

( [0,O, LI*%E* ( (-LI/A)*T), L2*%E" ((-LI/A)*T) ],•.
[0,O, 0,G1 *%E" (-G1 *T) ], -
[GI*%E ^ ((-G1/B)*T), L2* %E"((-G1/B)*T),O, 0], -

* e [G2*%E ((-G2/C)*T),LI*%E"((-G2/C)*T),0,0]);

TIME= 468 MSEC.

(- L2 - LI) T (- L2 LI) T

(D6) MATRIX([0, 0, Li %E , L2 %E

-GI T (-L2 -Gi) T C- L2 -G) T
[0, 0, 0, GI %E ], [GI %E ,L2 %E 0

(-Li -G2) T (-Li -G2) T
0], [G2 %E , L %E , 0, 0])

/* THE NESTED DO LOOPS COMPUTE THE LAPLACE TRANSFORM OF */
/* TCORE AND STORE IT IN A TEMPORARY ARRAY TEMPO:

(C7)

FOR I:I THRU 4 DO
FOR J:l THRU 4 DO

TEMPO[I,J] :LAPLACE(TCORE[I,J] ,T,S);

LAPLAC FASL DSK MACSYM BEING LOADED
LOADING DONE
TIME= 1195 MSEC.
(D7) DONE

/* GENMATRIX OPERATION IS USED TO COPNERT ARRAY TEMPO */

/* INTO MATRIX SCORE=LAPLACETRANSFORM ( TCORE)
/* SCORE MATRIX SHOWN BELOW:

;-

(C8) SCORE:GENMATRIX(TEMPO,4,4);

GENMAT FASL DSK MAXOUT BEING LOADED
LOADING DONE
TIME= 98 MSEC.

[ Li L2 ]
0 0 0 ------------ ------------

SS+ L2 + LI S + L2 L1 ]
[ ]
f GI ]

[ SG1 ]

12 + GI S + L2 + (;I

..
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[ G2 L1

S + L1 + G2 S + L1 + G2]

(c9)
KILL(TEMPO);

TIME= 8 MSEC.

(D9) DONE

/* SENTRY=INVERSE OF ( IDENTITY - SCORE ). DENOTES NONCOIMUTATIVE */

/* EXPONENTIATION. INVERSE OF MATRIX = MATRIX ^^-1: /
(C1 0)

SENTRY: (IDENT(4)-SCORE)Y"-1 $

TIME= 82298 MSEC.

/* TEMPO= S * FIRST ROW OF SENTRY. RATSIMP SIMPLIFIES EXPRESSIONS: */

(C11) TEMPOt RATSIMP (S*ROW(SENTRY,1)) $

TIME= 167759 MSEC.

/* LMi" LIMIT CF TEMPO AS S--.>O:

(C12) LMT:LIMIT(TEMPO,S,O) $

LIMIT FASL DSK MACSYM BEING LOADED
LOADING DONE
TIME= 2873 MSEC.

/* LMTDS.T= LIMITING IRTERVAL TRANSITION PROBABILITIES
/* OF THE SEMI-mARKOV PROCESS: */

(C13) vIMTDST:RATSIMP(LMT*WAIT) $

TIME= 28120 MSEC.

.4 /* CHECK ON LMTDST FOR L1=O AND L2=0. EVALUATE LMTDST FOR L2=0: 40

(C14) IMTDST,L2=0 $

TIME= 683 MSEC 2
4 (CIS) RATSIMP(D14);

TIME= 997 MSFC.

.i

~1
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[ GI Li ]
(DIS) [------- 0------- 0]

[L1 + G1 LI +G ]
/* EVALUATE LMTDST FOR L1=: */
(C16) LMTDST,LI=0 $

TIME= 646 MSEC.

(C17) RATSIMP (D16) 2

TIME= 4652 MSEC.
[ G2 L2 ]

(D17) [------- 0 0 ------- ]
[L2 + G2 L2 + G2 ]

/4 LIMITING INTERVAL TRANSITION PROBABILITIES IN /

/* GENERAL FORM SHOWN BELOW: */

(C18) LMTDST;

TIME= 2 MSEC.
2 2

(D18) MATRIX([(G1 G2 L2 + Gl G2)/((LI + GI) L2
-0

2 2 2
+ (Li + (C2  2 Gi) Li + GI G2 + GI ) L2 + GI G2 Li + GI G2),

2 2 2
(Li L2 + (LI + (G2 + G) Li) L2)/((Li + Gi) L2

2 2 2

+ (Li + !(G2 2 Gl) Li + G1 G2 +Gi ) L2 + Gi G2 Li +G G2),

2 2 2

Gl G2 LI/((LI + Gl) L2 + (LI + (G2 + 2 GI) LI + GI G2 + Gl ) L2

2 2 2
+ G1 G2 Li + G1 G2), (GI L2 + (GI L + Gi) L2)

2 2 2
/((Ll + Sl) L2 + (LI + (G2 + 2 Gl) Ll + Gi G2 + Gl ) L2 + G1 G2 Ll

2
+ G1 G2)])

/4 COMPUTE 77.TE OCCUPANCY STATISTICS. TOCUP[1,2] 4/ a
/* = AVRG. PK. OF TIMES STATE 2 IS VISITED IN [O,T] 4/
/( STARTING TN STATE I AT TIMfE ZERO. ILT = INVERSE */

/4 'APLACE TRA-NSFORM: 4

------ _ "
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(C19) SOCUP[1,2] = RATSIMP(SENTRY[1,2]/S) $

TIME= 5426 MSEC.

(C20) TOCUP[1,?] = ILT(SOCUP[1,2],S,T) $
/* INFORMATION REQUESTED BY THE ILT ROUTINE: */

2 2 2
IS Li + (2G2 + 2G1)L1 + G2 - 2G1G2 + G1

POSITIVE, NEGATIVE, OR ZERO?
/* ANSWER ENTERED FROM THE TERMINAL:

POSITIVE;

TIME= 162735 MSEC.

(C21) TOCUP[1,2],LI=I,L2=3,GI=10,G2=30;

TIME= 5377 MSEC.
14

(D21) - 21 T 114998 SINH(SQRT(174) T) 9515 COSH(SQRT(174) T)
%E (--------+---------------- ----------------------

134657 SQRT(174) 134657
S6T

65 T 3 %E 841

178 68 31684

/* NOTE THAT T2OCUP[1,2] HAS A LINEAR TERM IN T '/
/* FOR LARGE I "77 'E>'M WiTL BE DOMINANT :

(C22) PART(TOCUP[1,2],2);

TIME= 3 MSEC,
2 2 2

(D22) (GI Li L2 + (GI Li + (GI G2 + G1 ) Li) L2) T

2 2 2
/(CLI + GI) L2 + (LI + G; + 2GI) Li + G1 G2 + G1 ) L2

2
+ G1 G2 L+ G1 G2)

IV. DISCUSSION OF THE RESULTS

Two important parameters for ostimating the reliability of operation of

this system are hl and h2 , respectively the probabilities of being fully

". • . •
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Equation (11) is derived by observing the results obtained interactively with

MACSYMA. The exact expression of NI2 (T) contain exponentially decaying terms

of T and the linear term, shown in equation (11). It is interesting to

consider the effect of G on N1 2 (T). As G increases without bound, D=GI(G 2+L2 )

(approximate), h2=L 1L2/ (G1 (G2+L2 )) (approximate) and consequently Glh 2=L1 L2/ (G2+L2 ).

Thus

N12  = L1 L2T/(G2 2) (approximate). (12)
We obsrv taLL (T) (LG2+L2)

We observe that L1L2/(G 2 L2) is a lower bound on the slope of N1 2 (T) as 1

goes to infinity. Note that even for very large values of GI , the average

nminber of times a complete system-breakdown occurs in [O,T] cannot be made

less than that given by equation (12).

Next, let us consider the average first-passage times between pairs of

states. Let T denote the average first-passage time from state i to state

j. Then we define T21 as the recovery-time of the system from complete break-

down in state 2 to fully operational in state 1. The unknown quantities T..
1J

satisfy a set of linear algebraic equations which can be easily solved by

MACSYMA. Solving these equations we have

T2= (L1 +G2 )(l/G 1 +1/(L+G

As G increases without bound, recovery-time becomes

T 21 = r/G2 , (14) 0

-7
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Recovery-time - Average repair-time for front-end processor.

As G2 increases without bound, recovery-time becomes

T2= 1/G1,

Recovery-time = Average repair-time for main processor.

These two values of T21 are intuitively obvious. If the main processor does

not fail too soon, i.e., L1 is close to zero, then

T21 = (1G 1 ) + (1G 2 ), (15)

i.e., Recovery-time = Average repair-time for main processor

+ Average repair-time for front-end processor.

There are other reliability-related expressions which can be studied in a

similar manner. We believe that the above results illustrate the usefulness

of computer-aided algebraic manipulation techniques for analyzing semi-Markov

processes.

V. CONCLUSION 0

The main advantage of using computer-aided algebraic manipulation stems

from the fact that the core matrix can be a function of system parameters.

Closed-form analytical solutions can be obtained as functions of these system

parameters. Numerical analysis will either require repetition of the same

computations for different parameter values or some sort of sensitivity analysis _

over a limited range of parameter values. Also there is no need to invent

!S
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ingenious ad-hoc methods for individual problems. Using computer algebra, the

same standard approach can be used to analyze all such processes.

The size of the system, as measured by the number of states, that can be

handled in this manner, obviously depends on the speed and memory-size of

the computer being used, It has been observed that the CILJ time required to

invert a matrix to compute E(s) is usually much less than the time required

for simplifying some results using RATSDhIP or the time required for computing

the inverse Laplace transform to obtain N. (T). Normally only a few expressions
1j

4 of interest need to be computed for any system. Hence, as long as E(s) can be

computed in a reasonable period of time, the corresponding system can be

analyzed by this approach.
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